Cycles, Chords, and Planarity in Graphs

Damon Hochnadel
Under the direction of
Prof. John Caughman
With second reader
Prof. Paul Latiolais

A 501 project based on Etienne Birmelé's article "Every Longest Circuit of a 3-Connected,

$\mathrm{K}_{3,3}$-Minor Free Graph Has a Chord"

A graph G is a pair of sets, one of vertices V, and one of edges E, along with a relation that associates edges with pairs of vertices. These vertices are its endpoints and two vertices are adjacent (neighbors) if they are endpoints of the same edge. A graph is simple if it has no loops or multiple edges. The degree of a vertex is the number of edges to which it is an endpoint.

The Petersen Graph with 10 vertices and 15 edges.

Chords

A cycle has a chord if there are a pair of vertices that are adjacent, but not along the cycle.

Connected and k-Connected

A graph G is connected if for any pair of vertices u, v, there is a path in G that has u and v as endpoints. G is k-connected if the removal of any set of k vertices from G results in a graph that is neither disconnected or a single vertex. (Specifically, a connected graph is 0 -connected).

The Petersen graph is 2-connected, but not 3-connected

Components

The components of a graph are its maximal connected subgraphs.

This graph has 3 components

Bipartite Graphs and $\mathrm{K}_{\mathrm{n}, \mathrm{m}}$

A bipartite graph is a graph where the vertices can be partitioned into two disjoint subsets such that each subset contains no pairwise adjacent vertices. The graph $\mathrm{K}_{\mathrm{n}, \mathrm{m}}$ is the complete (all edges) bipartite graph where one partition has n vertices and the other m.

The graph $\mathrm{K}_{3,3}$

Graph Minors

H is a minor of a graph G if H is obtainable from G by a sequence of vertex and edge deletions and edge contractions.

A cycle with 4 vertices is a minor of the starting graph

Theorem

In 1982, noted Graph Theorist Carsten Thomassen conjectured that every longest cycle of a 3-connected graph has a chord.

Thus we have this theorem, a significant milestone toward finding the truth of this conjecture, by Etienne Birmelé:

Every longest [cycle] of a 3-connected, $\mathrm{K}_{3,3}$-minor free graph has a chord.

A longest length cycle of the Petersen graph has multiple chords

Planar Graphs

A graph is called planar if it can be represented on the plane without crossed edges.

K_{4} may seem to be nonplanar here...

But because we can draw it without crossed edges, it is planar!

However, $\mathrm{K}_{3,3}$ is not planar. No matter how it's depicted, it will always have at least one crossed edge.

Wagner's Theorem

In 1937, Klaus Wagner published this theorem named for him:

A graph is planar if and only if it contains no K_{5} and no $K_{3,3}$ minor.

Therefore, our theorem comes with the corollary that every longest cycle of a 3-connected, planar graph has a chord.

Component Support

We begin the proof by selecting a longest length cycle C. We then look at $G \backslash C$, and let $\mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{r}}$ be the connected components of $\mathrm{G} \backslash \mathrm{C}$. We denote by $\mathrm{N}(\mathrm{i})$ the vertices on C that are adjacent to some vertex in H_{i}. Let P be an arc (connected subgraph) of C . We say P is a support of H_{i} if $N(i)$ is a subset of $V(P)$.

Lemma 4 (i) and (ii)

(i) Every $\mathrm{N}(\mathrm{i})$ has at least three vertices.
(ii) Every vertex of the cycle is in at least one $N(i)$.

Each of these points are thanks to the fact that G is 3-connected. If some $\mathrm{N}(\mathrm{i})$ have one or two vertices, then H_{i} could be disconnected by the removal of fewer than three vertices. Also, every vertex on C has two neighbors in C , and so must have one neighbor in some H_{i}.

Lemma 4 (iii) and (iv)

(iii) Two consecutive vertices of C cannot belong to the same $\mathrm{N}(\mathrm{i})$. (iv) There is no pair of consecutive vertices of C such that the first of each pair belongs to an $N(i)$ and the second of each belongs to an $N(j)$.

Not possible because C is a longest length cycle.

How Do We Solve This?

We do so by looking at supports that are minimal with respect to inclusion. We start by selecting one minimal support P of some H_{i} (and we will call P without its endpoints P^{\prime}). Then, we find a support Q for some H_{j} such that:
i) $N(j)$ and P^{\prime} share at least one vertex
ii) $P \cup Q$ is minimal with respect to inclusion
iii) Subject to the first two conditions, Q is minimal with respect to inclusion

Vertices of Interest

We then look at six (not necessarily totally distinct) vertices we will call vertices of interest:

- Three distinct vertices of $N(i)$. Two of these three are the two endpoints of P.
- Three distinct vertices of $N(j)$. Two vertices are the endpoints of Q, and one must be on P^{\prime} (the vertex on P^{\prime} may or may not be an endpoint of Q).

Now For a Case Breakdown

We now divide the proof into a number of cases. The first case we look at is when P is a subpath of Q.

How Do We Know One of The Edges Exists?

If there is no vertex from $N(k)$ outside $P \cup Q$, and both endpoints of Q are not in $N(k)$, then we find that one of our minimality assumptions doesn't hold.

Finding a $\mathrm{K}_{3,3}$ Minor

We then contract the bold arcs and H_{i} and H_{j} to single points, as well as H_{k} along with any vertices in $\mathrm{N}(\mathrm{k})$ not on a bold arc to a single vertex.

Other Cases (P is not a subpath of Q)

Trouble Case (Case 10)

We can't guarantee a k in the middle...
And while we can find an m and n on the outside, we don't know if $H_{m}=H_{n} \ldots$

Conclusion

Using the 3-connectedness of a graph, along with the assumption that it contains no $K_{3,3}$-minor, Birmelé finds that assuming the lack of a chord leads to a contradiction, the presence of a $K_{3,3}$-minor. This is a powerful step toward solving Thomassen's conjecture. With further research into the absent case, this would give us a large collection of graphs for which the conjecture holds, or a possible counterexample.

References

1. Etienne Birmelé, Every Longest Circuit of a 3-Connected, $K_{3,3}$-Minor Free Graph Has a Chord.
2. Douglas B. West, Introduction to Graph Theory, Second Edition, Prentice-Hall Inc., Upper Saddle River, NJ, 1996.
3. Wagner's Theorem, Wikipedia, http://en.wikipedia.org/wiki/Wagner\'s_theorem
